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ABSTRACT

We point out that observations of a 5 percent velocity difference between photospheric gas and
magnetic structures at a given latitude may simply result from angular momentum conservation
by fluid elements in the convection zone. Estimates of the viscosity and magnetic drag are considered,
and we conclude that they probably are not large enough to enforce strictly rigid rotation.
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I. INTRODUCTION

Measurements of solar rotation from the Doppler
shifts of photospheric lines have historically indicated a
gas rotation velocity about 5 percent lower than derived
from the rotation rate of magnetic active regions at the
same latitude. Most recently, the same result has
emerged from a series of measurements made over the
period 1966-1970 at Mount Wilson (Howard and Harvey
1970; Wilcox and Howard 1970). Since this analysis
of the rotation and its time variations was made using
a new approach to the measurement of both the gas
and magnetic rotation, the persistent difference between
the two values has taken on a greater significance. On
the basis of these observations, Foukal (1972) suggested
that the newly emerged active-region fields might be
anchored below the photosphere in a layer of higher
angular velocity and could be rotating through the
photosphere with low dissipation of the relative motion.

It is the purpose of this Letter to suggest a simple
dynamical mechanism that gives rise to the observed
effect: Under quite reasonable circumstances, rising and
falling elements of fluid in the solar convection zone
tend to conserve their angular momentum mwr? as they
move up or down. Hence the angular velocity w varies
as 1/r2, and one would expect the fluid at the surface
to be rotating more slowly than deeper layers. The
magnetic structures, being frozen into the matter fur-
ther down, rotate rigidly with the lower material and
hence rotate more rapidly. The observed 5 percent
difference would be produced in this picture if the up-
welling convecting elements conserved their angular
momentum over a zone ~0.05/2R, =~ 15,000 km deep
beneath the photosphere. It is interesting that this
depth is similar to the scale of the supergranulation.

Factors tending to inhibit conservation of angular
momentum and enforce rigid rotation are the ordinary
viscosity and the dragging effect of the magnetic struc-
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tures. If the above explanation is correct, these forces
must be insufficient to enforce rigid rotation. This prob-
lem is considered below.

We note further that the effect is dynamical, being
driven by the convective motions, and one does nof
have a characteristic time after which the surface will
rotate with the lower layers. As long as there is convec-
tion, this effect will occur if the drag forces are small
enough.

Observations show essentially the same differential
rotation with latitude in both the gas and magnetic
field. This suggests that the equatorial acceleration of
the photosphere (e.g., Howard and Harvey 1970) may
be the result of large-scale convective and meridional
flows as reviewed by Gilman (1974), whereas the differ-
ence between gas and field rotation is produced in a thin
surface shell, associated with the supergranular flow
observed at the photosphere.

On the other hand, Durney (1974) has shown that if
the turbulent viscosity provides an enhanced rate of
radial momentum exchange, then large-scale meridional
motions can in fact exist which are consistent with the
observed values of dw/00, dw/dr, and 3(dw/30)/dr (see
also Biermann 1938).

Thus the inward increase of angular velocity that we
propose seems to be consistent with present thinking on
the mechanisms leading to the solar differential rotation
with latitude.

II. ESTIMATE OF VARIOUS DRAG FORCES

We now consider drag effects which tend to force the
upper layers to rotate rigidly with the lower layers. We
identify two types of drag. First, the slower rotation of
the surface layers implies a radial shear and a viscous
drag. Second, the rigid rotation of the magnetic field
and the consequent interaction between the field struc-
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tures and the slower-rotating fluid will also tend to drag
the fluid along.

a) Viscous Drag

Let the viscosity of the fluid be represented by a
kinematic viscosity v». For the moment we will not
specify the viscosity, but merely inquire how small »
must be for the viscous drag to be negligible. Since we
are interested only in order-of-magnitude estimates, we
consider the following simple problem in a cylindrical
geometry.

Let fluid flow radially between inner radius »; and
outer radius 7, with a given velocity v., and assume

cylindrical symmetry. The inner boundary condition is.

that the azimuthal velocity v4 is given as wor, and the
outer condition is that the stress » (du,/9r — v4/r) = 0.
The differential equation for v4(r) is given by Landau
and Lifshitz (1959):

A7y ( 6v¢) )
(ar + r or r? (1)
If v, is a constant, the general solution is
B
w=ftaepor)(n-2), @

where r,, = v/V, is a characteristic length and 4 and B
are to be determined by fitting the boundary conditions.
It is readily found that if 7, << ry, then

Vp = 0)01’02/7’ (3)

to lowest order in r,/r1, independent of the sign of V..
But the 14 given in equation (3) is precisely that repre-
senting conservation of angular momentum. Thus, it
appears that if v is small enough to satisfy the inequality

ey <1, (4)

then viscous drag is insufficient to maintain rigid
rotation.

Putting in typical numbers », =
v = 10* cm 5%, one finds that

<& 5 X 10% cm? 571 (3)

5X 1019¢cm and

will result in conservation of angular momentum, with
v « 1/7.

Now let us inquire into the magnitude of the viscosity
coefficient ». One may readily compute the molecular
viscosity coefficient for the ionized gas from the formula

2 21 X 1078752
pln A

(Spitzer 1962), where In A is the usual Coulomb loga-
rithm. If one takes any reasonable range of values of
density and temperature in the convection zone (e.g.,
Simon and Weiss 1968), one finds that » is of order
unity. Hence molecular viscosity is inadequate by many
orders of magnitude to enforce rigid rotation.

It is also necessary to consider eddy, or turbulent,

cm? 571 6)

Vol. 199

viscosity. The following considerations suggest that this
is also too small. First note that the general convective
motion cannot contribute to the viscous drag, because
each fluid element as it moves up or down tends to con-
serve angular momentum. In fact, careful consideration
of the molecular viscosity in this situation shows that
the isotropic distribution of velocities is critical. To
compute the eddy viscosity coefficient, one must obtain
an expression for the rms turbulent velocity v, relative
to the upward- and downward-moving elements, and
then find the mean free path A\ for such motions. The
turbulent viscosity », is then given by

Ve = f>\t'U¢ y

where f is a factor of order unity. Various values of »,
are quoted in the literature (see, e.g., Gilman 1974),
ranging between 10'? and 10 cm?s™!. Hence even
turbulent viscosity seems insufficient to enforce rigid
rotation.

b) Flux-Tube Drag

We now consider the drag effect of the magnetic flux
tubes moving through the external shell. Both the
Reynolds number and the magnetic Reynolds number
of the flow are very large (Foukal 1972). Consequently,
if there were no convection, the motion of a flux tube
of diameter d at relative velocity v through a layer of
density p would result in a drag force Fp = pv’d per
unit depth of the layer (see, e.g., Landau and Lifshitz
1939). If the layer were initially moving at a velocity v
relative to the flux tubes, then it would require an im-
pulse of magnitude pv4 per unit depth (where 4 is the
total area of the layer) to acquire the same velocity as
the flux tubes. If this impulse is derived from the force
Fp, the layer will require a time of order ¢ = pvA/pv?d
for its speed to be increased significantly. Now, let the
total number of flux tubes be N and let the cross-
sectional area of a flux tube be @ = d% Then the total
layer will be sped up in a characteristic time ¢ =
A/va*N. About 1 percent of the surface is covered by
flux tubes and d = 10% km, v = 10* cm s~2, which yield
t= 108s.

Hence, if we think in terms of a rigidly rotating solar
core with extruding flux tubes, the spin-up time for an
external equatorial shell would be of the order of 108 s.
Thus, in the absence of convection, an external shell
would be forced into corotation with the interior very
rapidly.

In the presence of convection, the situation is quite
different. The question is simply whether the flux tubes
can transfer enough momentum to the gas in one-half
convective period to cause it to corotate at the photo-
sphere. Assuming the extreme case, where the convec-
tive element came right to the photosphere and experi-
enced the full velocity difference for the full time, we
would get once again that the time to get corotation of
the gas at the top of one convective cell would be about
108 s

This is long compared with the lifetime of a super-
granular convective cell (~10%s), so we can take the
effect of flux-tube drag as being small. However, we
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also see that a change in the nominal diameter of flux
tubes, or in the percentage of the solar surface they
cover, from the values discussed above could change
this conclusion.

III. DISCUSSION AND CONCLUSIONS

On the basis of the foregoing calculations, it appears
reasonable that the observed discrepancy between the
rotation velocity of photospheric fluid and magnetic
structures can be explained in terms of conservation of
angular momentum in radial convection. Estimates of
the effect of viscosity and flux-tube drag indicate that
they may be insufficient to enforce corotation.

The observed effect can be explained on this basis if
the convective elements in the top 15,000 km of the con-
vection zone conserve their angular momentum while
the magnetic flux tubes rotate rigidly. The value of this
depth suggests that angular momentum is conserved in
the supergranular flow. Alternatively, we could have a
deeper region where angular momentum is only par-
tially conserved.

ROTATION AT SOLAR PHOTOSPHERE L73

In this context, it is of particular interest that in the
years 1973-1974, near solar cycle minimum, the photo-
spheric gas velocity seems to gradually approach the
rotation velocity of the magnetic field structures
(Howard 1974), suggesting that the degree of corotation
of the gas and field may vary during the solar cycle.

We suggest that if our simple explanation of the ob-
servations is correct, then such time variations in the
rotation rate of the photosphere (see also Howard 1971)
should be related to either variations in the depth of
the solar convective zone or variations in the efficiency
of angular momentum transfer between the rigid ro-
tator and the convective shell.
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